Questões de Inglês - Ensino da Língua Estrangeira Inglesa para Concurso

Foram encontradas 505 questões

Q2453845 Inglês
Predicting the unpredictable


Some years ago, a devastating earthquake struck the Italian town of L’Aquila. More than 300 people lost their lives, over 1,500 people were injured, and many buildings were destroyed. Two years later, seven earthquake experts were involved in a court case: Did they adequately warn the public after the initial tremors began? At the heart of the debate is whether they could have predicted a disaster like this.


Although a lot of scientists are working to improve our ability to predict natural disasters, so far no one has come up with a reliable method to forecast earthquakes or volcanic eruptions, days or weeks beforehand. Most of the research focuses on the areas most likely to experience seismic activity – but even our knowledge about where these areas are, is very limited. One reason for this is that human beings have only been around for a very small part of the Earth’s history. In geological terms, we all arrived on the scene very recently. Records from the past 2,000 years are incomplete, and the biggest earthquakes nearly always happen in areas where there have been no earthquakes in recorded history.


So, is there any hope for improving our ability to predict disasters? A solution may come from an unexpected source. Four years ago, a team of US physicists at Rutgers University in New Jersey were studying why pharmaceutical powders stick together. They observed that the powder stuck together when placed in a spinning cylinder, but then developed cracks and collapsed. Just before the cracks developed, an electric signal, like a small bolt of lightning, was created. The scientists repeated the experiment with a wide range of different materials, and they got similar results every time.


This phenomenon might also exist in nature. Some scientists believe that rocks may become electrically charged under unusual pressure, such as before an earthquake. This electric charge then causes changes in the surrounding air or water, which animals may be able to sense before humans do. For example, while biologists were studying a colony of frogs in a pond near L’Aquila, they noticed that nearly all the animals left the water days before the earthquake. A similar thing happened in China, when snakes were hibernating for the winter in caves, but escaped just before a large earthquake. The same kind of electric charge, like the small bolt of lightning felt in the experiment at Rutgers, may have been responsible.


At the moment, there is no reliable way ............ using such findings to predict earthquakes, and further studies may be necessary to give us a better understanding of the interactions involved, but one day, the technology may be used ............ predict future catastrophes. For example, two science institutions in Russia and Britain are already developing a new micro-satellite, which could detect these electric signals and help rescue people ................ natural disasters in time. Scientists are planning to launch the first of these satellites ............... space. Will these satellites be the solution? Only time will tell. For the time being, the best defense is to be prepared.
Active Learning Strategy is a teaching technique that increases student engagement in daily lessons. This technique can also help teachers to become more actively engaged in how they teach the curriculum and how they develop each student’s learning potential.
Choose the alternative that presents an active learning strategy.
Alternativas
Q2453842 Inglês
Predicting the unpredictable


Some years ago, a devastating earthquake struck the Italian town of L’Aquila. More than 300 people lost their lives, over 1,500 people were injured, and many buildings were destroyed. Two years later, seven earthquake experts were involved in a court case: Did they adequately warn the public after the initial tremors began? At the heart of the debate is whether they could have predicted a disaster like this.


Although a lot of scientists are working to improve our ability to predict natural disasters, so far no one has come up with a reliable method to forecast earthquakes or volcanic eruptions, days or weeks beforehand. Most of the research focuses on the areas most likely to experience seismic activity – but even our knowledge about where these areas are, is very limited. One reason for this is that human beings have only been around for a very small part of the Earth’s history. In geological terms, we all arrived on the scene very recently. Records from the past 2,000 years are incomplete, and the biggest earthquakes nearly always happen in areas where there have been no earthquakes in recorded history.


So, is there any hope for improving our ability to predict disasters? A solution may come from an unexpected source. Four years ago, a team of US physicists at Rutgers University in New Jersey were studying why pharmaceutical powders stick together. They observed that the powder stuck together when placed in a spinning cylinder, but then developed cracks and collapsed. Just before the cracks developed, an electric signal, like a small bolt of lightning, was created. The scientists repeated the experiment with a wide range of different materials, and they got similar results every time.


This phenomenon might also exist in nature. Some scientists believe that rocks may become electrically charged under unusual pressure, such as before an earthquake. This electric charge then causes changes in the surrounding air or water, which animals may be able to sense before humans do. For example, while biologists were studying a colony of frogs in a pond near L’Aquila, they noticed that nearly all the animals left the water days before the earthquake. A similar thing happened in China, when snakes were hibernating for the winter in caves, but escaped just before a large earthquake. The same kind of electric charge, like the small bolt of lightning felt in the experiment at Rutgers, may have been responsible.


At the moment, there is no reliable way ............ using such findings to predict earthquakes, and further studies may be necessary to give us a better understanding of the interactions involved, but one day, the technology may be used ............ predict future catastrophes. For example, two science institutions in Russia and Britain are already developing a new micro-satellite, which could detect these electric signals and help rescue people ................ natural disasters in time. Scientists are planning to launch the first of these satellites ............... space. Will these satellites be the solution? Only time will tell. For the time being, the best defense is to be prepared.
There are a variety of teaching methods and strategies available to teachers to help their students learn or develop knowledge and skills.
Choose the alternative that contains some examples of teaching methods and strategies.
Alternativas
Q2452354 Inglês
When it comes to Language Acquisition, Connectionism denies both innate rules and the existence of any innate language-learning module, for L2 input would be of greater importance than it is in processing models based on innate approaches. In Connectionism, input is the source of both the units and the rules of language. An important contribution of Connectionism to Second Language Acquisition studies is usually associated with the premise that adults are not better second language learners when compared to children. That would because, despite having superior skills than children, adults would not be considered as better second language learners. Based on such premise, check the answer whose information contains the adequate explanation for it in accordance with the Connectionist Theory.
Alternativas
Q2452351 Inglês
“Languages vary” this is a very coherent statement when it comes to the study of language change phenomenon. That being said, check the answer that can be equally considered as coherent, on what matters to the study of such phenomenon.
Alternativas
Q2435888 Inglês

O ensino de Língua Inglesa como X representa uma abordagem que reconhece o inglês não apenas como uma língua estrangeira, mas como uma ferramenta de comunicação global entre pessoas de diferentes línguas. Nessa perspectiva, o foco vai além da aquisição de uma cultura específica ou da reprodução de padrões linguísticos tradicionais, priorizando a eficácia da comunicação intercultural. No contexto de ensino de Língua Inglesa como X, o objetivo principal é capacitar os alunos a se comunicarem de forma clara e eficaz em situações diversas, onde o inglês é usado como um meio de interação internacional. Isso implica uma abordagem flexível que valoriza a compreensão mútua acima da conformidade rígida com normas linguísticas específicas.


Marque a alternativa que substitui corretamente o X no texto acima.

Alternativas
Respostas
1: B
2: A
3: D
4: B
5: A