Questões de Concurso Militar AFA 2020 para Aspirante da Aeronáutica (Intendente)

Foram encontradas 4 questões

Q1663222 Física

Nas questões de Física, quando necessário, use:


• massa atômica do hidrogênio: mH = 1,67⋅10 –27 kg

• massa atômica do hélio: mHe = 6,65⋅10 –27 kg

• velocidade da luz no vácuo: c = 3⋅10 8 m/s

• constante de Planck: h = 6⋅10 –34 J⋅s

• 1 eV = 1,6⋅10 –19 J

• constante eletrostática do vácuo: k0 = 9,0⋅10N⋅m 2 / C2

• aceleração da gravidade: g = 10 m/s2

• cos 30º = sen 60º = √3/2

• cos 60º = sen 30º = √1/2

• cos 45º = sen 45º = √2/2

Uma partícula de massa M é lançada obliquamente com sua velocidade inicial Imagem associada para resolução da questão fazendo um ângulo de 30º com a direção horizontal, conforme indica figura a seguir.


Imagem associada para resolução da questão


Ao atingir a altura máxima de sua trajetória parabólica, essa partícula colide inelasticamente com um bloco de massa 5M. Esse bloco, de dimensões desprezíveis, está preso ao teto por um fio ideal, de comprimento 1,2 m, formando um pêndulo balístico. Inicialmente o fio do pêndulo está na vertical. Após a colisão, o pêndulo atinge uma altura máxima, na qual o fio tem uma inclinação de 30º em relação à direção horizontal.

Desprezando a resistência do ar, o módulo da velocidade inicial da partícula, v0, em m/s, é igual a

Alternativas
Q1663223 Física

Nas questões de Física, quando necessário, use:


• massa atômica do hidrogênio: mH = 1,67⋅10 –27 kg

• massa atômica do hélio: mHe = 6,65⋅10 –27 kg

• velocidade da luz no vácuo: c = 3⋅10 8 m/s

• constante de Planck: h = 6⋅10 –34 J⋅s

• 1 eV = 1,6⋅10 –19 J

• constante eletrostática do vácuo: k0 = 9,0⋅10N⋅m 2 / C2

• aceleração da gravidade: g = 10 m/s2

• cos 30º = sen 60º = √3/2

• cos 60º = sen 30º = √1/2

• cos 45º = sen 45º = √2/2

O sistema ilustrado na figura abaixo é composto de três blocos, A, B e C, de dimensões desprezíveis e de mesma massa, duas roldanas e dois fios, todos ideais.

Imagem associada para resolução da questão
Quando o sistema é abandonado, a partir da configuração indicada na figura, o bloco A passa, então, a deslizar sobre o plano horizontal da mesa, enquanto os blocos B e C descem na vertical e a tração estabelecida no fio que liga os blocos A e B vale TB. Em determinado instante, o bloco C se apoia sobre uma cadeira, enquanto B continua descendo e puxando A, agora através de uma tração T' B. Desprezando quaisquer resistências durante o movimento dos blocos, pode-se afirmar que a razão T'B /TB vale
Alternativas
Q1663224 Física

Nas questões de Física, quando necessário, use:


• massa atômica do hidrogênio: mH = 1,67⋅10 –27 kg

• massa atômica do hélio: mHe = 6,65⋅10 –27 kg

• velocidade da luz no vácuo: c = 3⋅10 8 m/s

• constante de Planck: h = 6⋅10 –34 J⋅s

• 1 eV = 1,6⋅10 –19 J

• constante eletrostática do vácuo: k0 = 9,0⋅10N⋅m 2 / C2

• aceleração da gravidade: g = 10 m/s2

• cos 30º = sen 60º = √3/2

• cos 60º = sen 30º = √1/2

• cos 45º = sen 45º = √2/2

Duas partículas idênticas, A e B, se movimentam ao longo de uma mesma trajetória x, sendo suas posições, em função do tempo, dadas por xA = 2t e xB = 4 + t, respectivamente, com x em metros e t em segundos. Em determinado instante, as partículas, que formam um sistema isolado, sofrem uma colisão parcialmente elástica, com coeficiente de restituição e = 0,5.

Nessas condições e desprezando o deslocamento dessas partículas durante a colisão, quando a partícula A estiver na posição 28 m, a partícula B estará na posição, em m,

Alternativas
Q1663235 Física

Nas questões de Física, quando necessário, use:


• massa atômica do hidrogênio: mH = 1,67⋅10 –27 kg

• massa atômica do hélio: mHe = 6,65⋅10 –27 kg

• velocidade da luz no vácuo: c = 3⋅10 8 m/s

• constante de Planck: h = 6⋅10 –34 J⋅s

• 1 eV = 1,6⋅10 –19 J

• constante eletrostática do vácuo: k0 = 9,0⋅10N⋅m 2 / C2

• aceleração da gravidade: g = 10 m/s2

• cos 30º = sen 60º = √3/2

• cos 60º = sen 30º = √1/2

• cos 45º = sen 45º = √2/2

O ozônio (O3) é naturalmente destruído na estratosfera superior pela radiação proveniente do Sol.

Para cada molécula de ozônio que é destruída, um átomo de oxigênio (O) e uma molécula de oxigênio (O2) são formadas, conforme representado abaixo:


Imagem associada para resolução da questão


Sabendo-se que a energia de ligação entre o átomo de oxigênio e a molécula O2 tem módulo igual a 3,75 eV, então o comprimento de onda dos fótons da radiação necessária para quebrar uma ligação do ozônio e formar uma molécula O2 e um átomo de oxigênio vale, em nm,

Alternativas
Respostas
1: D
2: C
3: C
4: D