Questões de Concurso Comentadas sobre inglês para engenheiro de segurança júnior

Foram encontradas 20 questões

Resolva questões gratuitamente!

Junte-se a mais de 4 milhões de concurseiros!

Q2281249 Inglês
Text CB1A2-I

        Oppenheimer’s brief advance into astrophysics began with a 1938 paper about neutron stars, which continued in a 1939 installment that further incorporated the principles of Einstein’s general theory of relativity. He then published a third paper on black holes on September 1st, 1939—but at the time, it was scarcely noticed because this was the very day Germany invaded Poland, launching World War II. Oppenheimer never wrote on the topic again.
        Even if it hadn’t been overshadowed by war, Oppenheimer’s work on neutron stars and black holes “was not understood to be terribly significant at the time,” says Cathryn Carson, a historian of science at the University of California, Berkeley.
        Each paper was written with a different member of the swarm of graduate students that Oppenheimer carefully cultivated. These protégés facilitated his ability to jump between research topics—and ultimately, helped him develop some of his most important contributions to physics.
        Oppenheimer’s climactic third paper, written with his student Hartland Snyder, explores the implications of general relativity on the universe’s most massive stars. Although the physicists needed to include some assumptions to simplify the question, they determined that a large enough star would gravitationally collapse indefinitely—and within a finite amount of time, meaning that the objects we now know as black holes could exist.

Internet: <scientificamerican.com> (adapted)

Based on the vocabulary and linguistic aspects of text CB1A2-I, judge the following item.


Graduate students are people studying for a master’s degree or doctorate.

Alternativas
Q2281248 Inglês
Text CB1A2-I

        Oppenheimer’s brief advance into astrophysics began with a 1938 paper about neutron stars, which continued in a 1939 installment that further incorporated the principles of Einstein’s general theory of relativity. He then published a third paper on black holes on September 1st, 1939—but at the time, it was scarcely noticed because this was the very day Germany invaded Poland, launching World War II. Oppenheimer never wrote on the topic again.
        Even if it hadn’t been overshadowed by war, Oppenheimer’s work on neutron stars and black holes “was not understood to be terribly significant at the time,” says Cathryn Carson, a historian of science at the University of California, Berkeley.
        Each paper was written with a different member of the swarm of graduate students that Oppenheimer carefully cultivated. These protégés facilitated his ability to jump between research topics—and ultimately, helped him develop some of his most important contributions to physics.
        Oppenheimer’s climactic third paper, written with his student Hartland Snyder, explores the implications of general relativity on the universe’s most massive stars. Although the physicists needed to include some assumptions to simplify the question, they determined that a large enough star would gravitationally collapse indefinitely—and within a finite amount of time, meaning that the objects we now know as black holes could exist.

Internet: <scientificamerican.com> (adapted)

Based on the vocabulary and linguistic aspects of text CB1A2-I, judge the following item.


The word “physicists” means “medical doctors”. 

Alternativas
Q2281247 Inglês
Text CB1A2-I

        Oppenheimer’s brief advance into astrophysics began with a 1938 paper about neutron stars, which continued in a 1939 installment that further incorporated the principles of Einstein’s general theory of relativity. He then published a third paper on black holes on September 1st, 1939—but at the time, it was scarcely noticed because this was the very day Germany invaded Poland, launching World War II. Oppenheimer never wrote on the topic again.
        Even if it hadn’t been overshadowed by war, Oppenheimer’s work on neutron stars and black holes “was not understood to be terribly significant at the time,” says Cathryn Carson, a historian of science at the University of California, Berkeley.
        Each paper was written with a different member of the swarm of graduate students that Oppenheimer carefully cultivated. These protégés facilitated his ability to jump between research topics—and ultimately, helped him develop some of his most important contributions to physics.
        Oppenheimer’s climactic third paper, written with his student Hartland Snyder, explores the implications of general relativity on the universe’s most massive stars. Although the physicists needed to include some assumptions to simplify the question, they determined that a large enough star would gravitationally collapse indefinitely—and within a finite amount of time, meaning that the objects we now know as black holes could exist.

Internet: <scientificamerican.com> (adapted)

Based on the vocabulary and linguistic aspects of text CB1A2-I, judge the following item.


The word “installment” (first sentence of the first paragraph) means, in the context of text CB1A2-I, “to make it ready to use”.

Alternativas
Q2281246 Inglês
Text CB1A2-I

        Oppenheimer’s brief advance into astrophysics began with a 1938 paper about neutron stars, which continued in a 1939 installment that further incorporated the principles of Einstein’s general theory of relativity. He then published a third paper on black holes on September 1st, 1939—but at the time, it was scarcely noticed because this was the very day Germany invaded Poland, launching World War II. Oppenheimer never wrote on the topic again.
        Even if it hadn’t been overshadowed by war, Oppenheimer’s work on neutron stars and black holes “was not understood to be terribly significant at the time,” says Cathryn Carson, a historian of science at the University of California, Berkeley.
        Each paper was written with a different member of the swarm of graduate students that Oppenheimer carefully cultivated. These protégés facilitated his ability to jump between research topics—and ultimately, helped him develop some of his most important contributions to physics.
        Oppenheimer’s climactic third paper, written with his student Hartland Snyder, explores the implications of general relativity on the universe’s most massive stars. Although the physicists needed to include some assumptions to simplify the question, they determined that a large enough star would gravitationally collapse indefinitely—and within a finite amount of time, meaning that the objects we now know as black holes could exist.

Internet: <scientificamerican.com> (adapted)

Based on the vocabulary and linguistic aspects of text CB1A2-I, judge the following item.


The word “overshadowed” (first sentence of the second paragraph) means, in the context of text CB1A2-I, “made less noticeable”. 

Alternativas
Q2281245 Inglês
Text CB1A2-I

        Oppenheimer’s brief advance into astrophysics began with a 1938 paper about neutron stars, which continued in a 1939 installment that further incorporated the principles of Einstein’s general theory of relativity. He then published a third paper on black holes on September 1st, 1939—but at the time, it was scarcely noticed because this was the very day Germany invaded Poland, launching World War II. Oppenheimer never wrote on the topic again.
        Even if it hadn’t been overshadowed by war, Oppenheimer’s work on neutron stars and black holes “was not understood to be terribly significant at the time,” says Cathryn Carson, a historian of science at the University of California, Berkeley.
        Each paper was written with a different member of the swarm of graduate students that Oppenheimer carefully cultivated. These protégés facilitated his ability to jump between research topics—and ultimately, helped him develop some of his most important contributions to physics.
        Oppenheimer’s climactic third paper, written with his student Hartland Snyder, explores the implications of general relativity on the universe’s most massive stars. Although the physicists needed to include some assumptions to simplify the question, they determined that a large enough star would gravitationally collapse indefinitely—and within a finite amount of time, meaning that the objects we now know as black holes could exist.

Internet: <scientificamerican.com> (adapted)
Based on the vocabulary and linguistic aspects of text CB1A2-I, judge the following item.
The pronoun “they” (last sentence of the last paragraph) refers to the word “assumptions”.
Alternativas
Respostas
1: C
2: E
3: E
4: C
5: E