Questões de Concurso Sobre interpretação de texto | reading comprehension em inglês

Foram encontradas 7.815 questões

Resolva questões gratuitamente!

Junte-se a mais de 4 milhões de concurseiros!

Q2453843 Inglês
Predicting the unpredictable


Some years ago, a devastating earthquake struck the Italian town of L’Aquila. More than 300 people lost their lives, over 1,500 people were injured, and many buildings were destroyed. Two years later, seven earthquake experts were involved in a court case: Did they adequately warn the public after the initial tremors began? At the heart of the debate is whether they could have predicted a disaster like this.


Although a lot of scientists are working to improve our ability to predict natural disasters, so far no one has come up with a reliable method to forecast earthquakes or volcanic eruptions, days or weeks beforehand. Most of the research focuses on the areas most likely to experience seismic activity – but even our knowledge about where these areas are, is very limited. One reason for this is that human beings have only been around for a very small part of the Earth’s history. In geological terms, we all arrived on the scene very recently. Records from the past 2,000 years are incomplete, and the biggest earthquakes nearly always happen in areas where there have been no earthquakes in recorded history.


So, is there any hope for improving our ability to predict disasters? A solution may come from an unexpected source. Four years ago, a team of US physicists at Rutgers University in New Jersey were studying why pharmaceutical powders stick together. They observed that the powder stuck together when placed in a spinning cylinder, but then developed cracks and collapsed. Just before the cracks developed, an electric signal, like a small bolt of lightning, was created. The scientists repeated the experiment with a wide range of different materials, and they got similar results every time.


This phenomenon might also exist in nature. Some scientists believe that rocks may become electrically charged under unusual pressure, such as before an earthquake. This electric charge then causes changes in the surrounding air or water, which animals may be able to sense before humans do. For example, while biologists were studying a colony of frogs in a pond near L’Aquila, they noticed that nearly all the animals left the water days before the earthquake. A similar thing happened in China, when snakes were hibernating for the winter in caves, but escaped just before a large earthquake. The same kind of electric charge, like the small bolt of lightning felt in the experiment at Rutgers, may have been responsible.


At the moment, there is no reliable way ............ using such findings to predict earthquakes, and further studies may be necessary to give us a better understanding of the interactions involved, but one day, the technology may be used ............ predict future catastrophes. For example, two science institutions in Russia and Britain are already developing a new micro-satellite, which could detect these electric signals and help rescue people ................ natural disasters in time. Scientists are planning to launch the first of these satellites ............... space. Will these satellites be the solution? Only time will tell. For the time being, the best defense is to be prepared.
The sentence The same kind of electric charge, like the small bolt of lightning felt in the experiment at Rutgers, may have been responsible (paragraph 3) is grammatically equivalent to which alternative?
Alternativas
Q2453839 Inglês
Predicting the unpredictable


Some years ago, a devastating earthquake struck the Italian town of L’Aquila. More than 300 people lost their lives, over 1,500 people were injured, and many buildings were destroyed. Two years later, seven earthquake experts were involved in a court case: Did they adequately warn the public after the initial tremors began? At the heart of the debate is whether they could have predicted a disaster like this.


Although a lot of scientists are working to improve our ability to predict natural disasters, so far no one has come up with a reliable method to forecast earthquakes or volcanic eruptions, days or weeks beforehand. Most of the research focuses on the areas most likely to experience seismic activity – but even our knowledge about where these areas are, is very limited. One reason for this is that human beings have only been around for a very small part of the Earth’s history. In geological terms, we all arrived on the scene very recently. Records from the past 2,000 years are incomplete, and the biggest earthquakes nearly always happen in areas where there have been no earthquakes in recorded history.


So, is there any hope for improving our ability to predict disasters? A solution may come from an unexpected source. Four years ago, a team of US physicists at Rutgers University in New Jersey were studying why pharmaceutical powders stick together. They observed that the powder stuck together when placed in a spinning cylinder, but then developed cracks and collapsed. Just before the cracks developed, an electric signal, like a small bolt of lightning, was created. The scientists repeated the experiment with a wide range of different materials, and they got similar results every time.


This phenomenon might also exist in nature. Some scientists believe that rocks may become electrically charged under unusual pressure, such as before an earthquake. This electric charge then causes changes in the surrounding air or water, which animals may be able to sense before humans do. For example, while biologists were studying a colony of frogs in a pond near L’Aquila, they noticed that nearly all the animals left the water days before the earthquake. A similar thing happened in China, when snakes were hibernating for the winter in caves, but escaped just before a large earthquake. The same kind of electric charge, like the small bolt of lightning felt in the experiment at Rutgers, may have been responsible.


At the moment, there is no reliable way ............ using such findings to predict earthquakes, and further studies may be necessary to give us a better understanding of the interactions involved, but one day, the technology may be used ............ predict future catastrophes. For example, two science institutions in Russia and Britain are already developing a new micro-satellite, which could detect these electric signals and help rescue people ................ natural disasters in time. Scientists are planning to launch the first of these satellites ............... space. Will these satellites be the solution? Only time will tell. For the time being, the best defense is to be prepared.
Why is the title of the article, “Predicting the unpredictable,” appropriate?
Alternativas
Q2453838 Inglês
Predicting the unpredictable


Some years ago, a devastating earthquake struck the Italian town of L’Aquila. More than 300 people lost their lives, over 1,500 people were injured, and many buildings were destroyed. Two years later, seven earthquake experts were involved in a court case: Did they adequately warn the public after the initial tremors began? At the heart of the debate is whether they could have predicted a disaster like this.


Although a lot of scientists are working to improve our ability to predict natural disasters, so far no one has come up with a reliable method to forecast earthquakes or volcanic eruptions, days or weeks beforehand. Most of the research focuses on the areas most likely to experience seismic activity – but even our knowledge about where these areas are, is very limited. One reason for this is that human beings have only been around for a very small part of the Earth’s history. In geological terms, we all arrived on the scene very recently. Records from the past 2,000 years are incomplete, and the biggest earthquakes nearly always happen in areas where there have been no earthquakes in recorded history.


So, is there any hope for improving our ability to predict disasters? A solution may come from an unexpected source. Four years ago, a team of US physicists at Rutgers University in New Jersey were studying why pharmaceutical powders stick together. They observed that the powder stuck together when placed in a spinning cylinder, but then developed cracks and collapsed. Just before the cracks developed, an electric signal, like a small bolt of lightning, was created. The scientists repeated the experiment with a wide range of different materials, and they got similar results every time.


This phenomenon might also exist in nature. Some scientists believe that rocks may become electrically charged under unusual pressure, such as before an earthquake. This electric charge then causes changes in the surrounding air or water, which animals may be able to sense before humans do. For example, while biologists were studying a colony of frogs in a pond near L’Aquila, they noticed that nearly all the animals left the water days before the earthquake. A similar thing happened in China, when snakes were hibernating for the winter in caves, but escaped just before a large earthquake. The same kind of electric charge, like the small bolt of lightning felt in the experiment at Rutgers, may have been responsible.


At the moment, there is no reliable way ............ using such findings to predict earthquakes, and further studies may be necessary to give us a better understanding of the interactions involved, but one day, the technology may be used ............ predict future catastrophes. For example, two science institutions in Russia and Britain are already developing a new micro-satellite, which could detect these electric signals and help rescue people ................ natural disasters in time. Scientists are planning to launch the first of these satellites ............... space. Will these satellites be the solution? Only time will tell. For the time being, the best defense is to be prepared.
Analyze the following sentences according to the information in paragraph 3.

1. The team at Rutgers was experimenting with creating electric signals.
2. None of the physicists expected pharmaceutical powders to stick together.
3. The small lightning bolt, or electric charge, followed a short time after the powder had fallen apart.
4. The electrical charge only affected powders that have fallen apart suddenly.
5. In the experiment, the electric charge always appeared before the materials fell apart.

Choose the alternative which contains the correct sentences.
Alternativas
Q2453836 Inglês
Predicting the unpredictable


Some years ago, a devastating earthquake struck the Italian town of L’Aquila. More than 300 people lost their lives, over 1,500 people were injured, and many buildings were destroyed. Two years later, seven earthquake experts were involved in a court case: Did they adequately warn the public after the initial tremors began? At the heart of the debate is whether they could have predicted a disaster like this.


Although a lot of scientists are working to improve our ability to predict natural disasters, so far no one has come up with a reliable method to forecast earthquakes or volcanic eruptions, days or weeks beforehand. Most of the research focuses on the areas most likely to experience seismic activity – but even our knowledge about where these areas are, is very limited. One reason for this is that human beings have only been around for a very small part of the Earth’s history. In geological terms, we all arrived on the scene very recently. Records from the past 2,000 years are incomplete, and the biggest earthquakes nearly always happen in areas where there have been no earthquakes in recorded history.


So, is there any hope for improving our ability to predict disasters? A solution may come from an unexpected source. Four years ago, a team of US physicists at Rutgers University in New Jersey were studying why pharmaceutical powders stick together. They observed that the powder stuck together when placed in a spinning cylinder, but then developed cracks and collapsed. Just before the cracks developed, an electric signal, like a small bolt of lightning, was created. The scientists repeated the experiment with a wide range of different materials, and they got similar results every time.


This phenomenon might also exist in nature. Some scientists believe that rocks may become electrically charged under unusual pressure, such as before an earthquake. This electric charge then causes changes in the surrounding air or water, which animals may be able to sense before humans do. For example, while biologists were studying a colony of frogs in a pond near L’Aquila, they noticed that nearly all the animals left the water days before the earthquake. A similar thing happened in China, when snakes were hibernating for the winter in caves, but escaped just before a large earthquake. The same kind of electric charge, like the small bolt of lightning felt in the experiment at Rutgers, may have been responsible.


At the moment, there is no reliable way ............ using such findings to predict earthquakes, and further studies may be necessary to give us a better understanding of the interactions involved, but one day, the technology may be used ............ predict future catastrophes. For example, two science institutions in Russia and Britain are already developing a new micro-satellite, which could detect these electric signals and help rescue people ................ natural disasters in time. Scientists are planning to launch the first of these satellites ............... space. Will these satellites be the solution? Only time will tell. For the time being, the best defense is to be prepared.
Read paragraph 2 and, according to its information mark the correct alternative.
Alternativas
Q2453835 Inglês
Predicting the unpredictable


Some years ago, a devastating earthquake struck the Italian town of L’Aquila. More than 300 people lost their lives, over 1,500 people were injured, and many buildings were destroyed. Two years later, seven earthquake experts were involved in a court case: Did they adequately warn the public after the initial tremors began? At the heart of the debate is whether they could have predicted a disaster like this.


Although a lot of scientists are working to improve our ability to predict natural disasters, so far no one has come up with a reliable method to forecast earthquakes or volcanic eruptions, days or weeks beforehand. Most of the research focuses on the areas most likely to experience seismic activity – but even our knowledge about where these areas are, is very limited. One reason for this is that human beings have only been around for a very small part of the Earth’s history. In geological terms, we all arrived on the scene very recently. Records from the past 2,000 years are incomplete, and the biggest earthquakes nearly always happen in areas where there have been no earthquakes in recorded history.


So, is there any hope for improving our ability to predict disasters? A solution may come from an unexpected source. Four years ago, a team of US physicists at Rutgers University in New Jersey were studying why pharmaceutical powders stick together. They observed that the powder stuck together when placed in a spinning cylinder, but then developed cracks and collapsed. Just before the cracks developed, an electric signal, like a small bolt of lightning, was created. The scientists repeated the experiment with a wide range of different materials, and they got similar results every time.


This phenomenon might also exist in nature. Some scientists believe that rocks may become electrically charged under unusual pressure, such as before an earthquake. This electric charge then causes changes in the surrounding air or water, which animals may be able to sense before humans do. For example, while biologists were studying a colony of frogs in a pond near L’Aquila, they noticed that nearly all the animals left the water days before the earthquake. A similar thing happened in China, when snakes were hibernating for the winter in caves, but escaped just before a large earthquake. The same kind of electric charge, like the small bolt of lightning felt in the experiment at Rutgers, may have been responsible.


At the moment, there is no reliable way ............ using such findings to predict earthquakes, and further studies may be necessary to give us a better understanding of the interactions involved, but one day, the technology may be used ............ predict future catastrophes. For example, two science institutions in Russia and Britain are already developing a new micro-satellite, which could detect these electric signals and help rescue people ................ natural disasters in time. Scientists are planning to launch the first of these satellites ............... space. Will these satellites be the solution? Only time will tell. For the time being, the best defense is to be prepared.
After reading the text carefully, we can infer that the main intention of the author of the article is to:
Alternativas
Respostas
1: C
2: A
3: C
4: B
5: A